College-wide Navigational Links | Go to Local Content
Main Content |

EO Water Information Network

Water Electrolysis

Researchers

Information on research labs involved in the study of electrolyzed water are summarized in the table below. Click on the links for CVs or more information.

Name
Affiliation
EO Water Related Publication

Dept. of Food Science and Technology, University of Georgia, Griffin, GA

Our team works together with the food processing and food service industries and consumers to ensure the safety and enhance quality of our food supply. We conduct research using acidic EO water, and we also explore the efficacy and health benefits of alkaline EO water. Click here for more information.

Dr. Muhammad Imran Al-Haq, Professor
University of Tokyo

Al-Haq, M. I., Seo, Y., Oshita, S., & Kawagoe, Y. (2001). Fungicidal Effectiveness of Electrolyzed Oxidizing Water on Postharvest Brown Rot of Peach. HortScience, 36(7), 1310-1314.

Al-Haq, M. I., Seo, Y., Oshita, S., & Kawagoe, Y. (2002). Disinfection effects of electroyzed oxidizing water on suppressing fruit rot on pear caused by Botryosphaeria berengeriana. Food Research International, 35, 657-664.
Al-Haq, M. I., Sugiyama, J., & Isobe, S. (2005). Applications of electrolyzed water in agriculture & food industries. Food Science and Technology Research, 11(2), 135-150.
Dr. Md. Latiful Bari, Principal Scientist/Assistant Professor
University of Dhaka
Bari, M. L., Nazuka, E., Sabina, Y., Todoriki, S., & Isshiki, K. (2003). Chemical and Irradiation Treatments for Killing Escherichia coli O157:H7 on Alfalfa, Radish, and Mung Bean Seeds. Journal of Food Protection, 66(5), 767-774. 
Bari, M. L., Nei, D., Enomoto, K., Todoriki, S., & Kawamoto, S. (2009). Combination Treatments for Killing Escherichia coli O157:H7 on Alfalfa, Radish, Broccoli, and Mung Bean Seeds. Journal of Food Protection, 72(3), 631-636. 
Bari, M. L., Sabina, Y., Isobe, S., Uemura, T., & Isshiki, K. (2003). Effectiveness of Electrolyzed Acidic Water in Killing Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monogytogenes on the Surfaces of Tomatoes. Journal of Food Protection, 66(4), 542-548. 
Dr. Wesley Bradford, Chief Scientist
Miox Corporation

Bradford, W. L. Theoretical Oxidation-Reduction Potentials for the System HOCl/OCL/Cl at pH 10.0 to 13.0 and comparison with Measurements in Catholyte from MIOX Systems.

Bradford, W. L., Coleman, Amos J. (1993). Disinfection By-Products Produced in Raw Water Treated with Mixed Oxidants.

Bradford, W. L. (1994). Summary Tests of the MIOX System on Water at the Columbus Water Works, Columbus, GA October 1994. MIOX Corp., December 20, 1-4.

Bradford, W. L. (2000). Notes on the Chemistry of Chlorine in Solution, with Emphasis on Reactions, Necessary Conditions and Rates of chlorite and Chlorate Formation.

Bradford, W. L., & Coleman, A. J. (2000). Disinfection By-Products in Raw Water Treated with Mixed Oxidants. MIOX, 1-9.

Bradford, W. L., & Robson, W. M. (2000). The Differences betweenOn-site Generated Mixed Oxidants and Sodium Hypochlorite.

Dr. M. A. Deza
University of Santiago de Compostela

Deza, M. A., Araujo, M., & Garrido, M. J. (2003). Inactivation of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes on the surface of tomatoes by neutral electrolyzed water. Letters in Applied Microbiology, 37, 482-487.

Deza, M. A., Araujo, M., & Garrido, M. J. (2005). Inactivation of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus on stainless steel and glass surfaces by neutral electrolysed water. Letters in Applied Microbiology, 40(5), 341-346.

Deza, M. A., Araujo, M., & Garrido, M. J. (2007). Efficacy of neutral electrolyzed water to inactivate Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus on plastic and wooden kitchen cutting boards (vol 70, pg 102, 2007). Journal of Food Protection, 70(5), 1070-1070.

Deza, M. A., Araujo, M., & Garrido, M. J. (2007). Efficacy of Neutral Electrolyzed Water To Inactivate Escherichia coli, Listeria monogytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus on Plastic and Wooden Kitchen Cutting Boards. Journal of Food Protection, 70(1), 102-108.

Dr. K. A. Fabrizio
Pennsylvania State University

Fabrizio, K. A., & Cutter, C. N. (2004). Comparison of electrolyzed oxidizing wate with other antimicrobial interventions to reduce pathogens on fresh pork. Meat Science, 68, 463-468.

Fabrizio, K. A., & Cutter, C. N. (2005). Application of electrolyzed oxidizing water to reduce Listeria monocytogenes on ready-to-eat meats. Meat Science, 71(2), 327-333. doi: 10.1016/j.meatsci.2005.04.012

Fabrizio, K. A., Sharma, R. R., Demirci, A., & Cutter, C. N. (2002). Comparison of Electrolyzed Oxidizing Water with Various Antimicrobial

Dr. Vincente Gomez-Lopez
CEBAS-CSIS
Department of Food Science and Technology
Gómez-López, V. M., Devlieghere, F., Ragaert, P., Chen, L., Ryckeboer, J., & Debevere, J. (2008). REDUCTION OF MICROBIAL LOAD AND SENSORY EVALUATION OF MINIMALLY PROCESSED VEGETABLES TREATED WITH CHLORINE DIOXIDE AND ELECTROLYSED WATER. Italian Journal of Food Science, 20(3), 321-331.
Gómez-López, V. M., Gil, M. I., Pupunat, L., & Allende, A. (2015). Cross-contamination of Escherichia coli O157:H7 is inhibited by electrolyzed water combined with salt under dynamic conditions of increasing organic matter. Food Microbiology, 46(0), 471-478.
Gómez-López, V. M., Gobet, J., Selma, M. V., Gil, M. I., & Allende, A. (2013). Operating conditions for the electrolytic disinfection of process wash water from the fresh-cut industry contaminated with E. coli o157:H7. Food Control, 29(1), 42-48.
Gómez-López, V. M., Lannoo, A.-S., Gil, M. I., & Allende, A. (2014). Minimum free chlorine residual level required for the inactivation of Escherichia coli O157:H7 and trihalomethane generation during dynamic washing of fresh-cut spinach. Food Control, 42(0), 132-138.
Gómez-López, V. M., Marín, A., Medina-Martínez, M. S., Gil, M. I., & Allende, A. (2013). Generation of trihalomethanes with chlorine-based sanitizers and impact on microbial, nutritional and sensory quality of baby spinach. Postharvest Biology and Technology, 85(0), 210-217.
Gómez-López, V. M., Marín, A., Medina-Martínez, M. S., Gil, M. I., & Allende, A. (2013). Generation of trihalomethanes with chlorine-based sanitizers and impact on microbial, nutritional and sensory quality of baby spinach. Postharvest Biology and Technology, 85(0), 210-217.
Gómez-López, V. M., Rajkovic, A., Ragaert, P., Smigic, N., & Devlieghere, F. (2009). Chlorine dioxide for minimally processed produce preservation: areview. Trends in Food Science & Technology, 20(1), 17-26.
Gómez-López VM, D. F., Ragaert P, Chen L, Ryckeboer J and Debevere J. (2008). Decontamination methods to prolong the shelf-life of minimally processed vegetables, state-of-the-art. Critical Reviews in Food Science and Nutrition, 48
Dr. Gilbert Gordon, Professor

Gordon, G., Emmert, G., Gauw, R., & Bubnis, B. (1998). Can Ozone and Ozone By-Products Be Formed During the Electrolysis of Salt Brine? Ozone Science & Engineering, 20, 239-249.

Gordon, G., Emmert, G., Gauw, R., & Bubnis, B. (1998). Can Ozone and Ozone Oxidative By-Products Be Formed During the Electrolysis of Salt Brine. Ozone Science and Engineering, 20, 239-249.

Gordon, G., Gauw, R., Emmert, G., & Bubnis, B. (1998). The kinetics and mechanism of ClO3-formation following the electrolysis of salt brine; What role do ClO2 and/or O3 play? Models in Chemistry, 135(5), 799-809.

Kenji Kobayashi Hoshizaki Electric Co., LTD

Kobayashi, K., Tosa, N., & Hara, Y. (1996). An examination of cooked rice with electrolyzed water. Nippon Shokuhin Kagaku Kogaku Kaishi, 43(8), 930-938.

Kobayashi, K., Yamasaki, Y., Tosa, N., Hara, Y., & Horie, S. (1997). The Extraction of Katsuobushi by Electrolyzed Water. Nippon Stokuhin Kagaku Kogaku Kaishi, 44(7), 508-511.

Masamichi Koseki, Researcher
Yamawaki Gakuen Junior College

Koseki, M., Fujiki, S., Tanaka, Y., Noguchi, H., & Nishikawa, T. (2005). Effect of water hardness on the taste of alkaline electrolyzed water. Journal of Food Science, 70(4), S249-S253.

Koseki, M., Nakagawa, A., Tanaka, Y., Noguchi, H., & Omochi, T. (2003). Sensory evaluation of taste of alkali-ion water and bottled mineral waters. Journal of Food Science, 68(1), 354-358.

Koseki, M., Tanaka, Y., Noguchi, H., & Nishikawa, T. (2007). Effect of pH on the taste of alkaline electrolyzed water. Journal of Food Science, 72(5), S298-S302. doi: 10.1111/j.1750-3841.2007.00384.x

Dr. Shigenobu Koseki
Hokkaido University, Graduate School of Agriculture

Koseki, S., Fujiwara, K., & Itoh, K. (2002). Decontamination effect of frozen acidic electrolyzed water on lettuce. Journal of Food Protection, 65(2), 411-414.

Koseki, S., & Itoh, K. Fundamental Properties of Electrolyzed Water. Nippon Shokuhin Kagaku Kogaku Kaishi, 47, 390-393.

Koseki, S., & Itoh, K. (2001). Prediction of microbial growth in fresh-cut vegetables treated with acidic electrolyzed water during storage under various temperature conditions. Journal of Food Protection, 64(12), 1935-1942.

Koseki, S., Yoshida, K., Isobe, S., & Itoh, K. (2004). Efficacy of Acidic Electrolyzed Water for Microbial Decontamination of Cucumbers and Strawberries. Journal of Food Protection, 67(6), 1247-1251.

Koseki, S., Yoshida, K., Kamitani, Y., & Itoh, K. (2003). Influence of Inoculation Method, Spot Inoculation Site, and Inoculation Size on the Efficacy of Acidic Electrolyzed Water against Pathogens on Lettuce. Journal of Food Protection, 66(11), 2010-2016.

Dr. A. Kraft, Manager
Gesimat GmbH
Berlin Area, Germany
Nanotechnology

Kraft, A., Blaschke, M., Kreysig, D., Sandt, B., Schroder, F., & Rennau, J. (1999). Electrochemical water disinfection. Part II: Hypochlorite production from potable water, chlorine consumption and the problem of calcareous deposits. Journal of Applied Electrochemistry, 29, 895-902.

Kraft, A., Blaschke, M., Kreysig, D., Sandt, B., Schröder, F., & Rennau, J. (1999). Electrochemical Water Disinfection Part II: Hypochlorite production from potable water, chlorine consumption and the problem of calcareous deposits. Journal of Applied Electrochemistry, 29, 895-902.

Kraft, A., Stadelmann, M., Blaschke, M., Kreysig, D., Sandt, B., & Schroder, F. (1999). Electrochemical water disinfection Part I: Hypochlorite production from very dilute chlorine solutions. Journal of Applied Electrochemistry, 29, 861-868.

Kraft, A., Stadelmann, M., Blaschke, M., Kreysig, D., Sandt, B., Schröder, F., & Rennau, J. (1999). Electrochemical water disinfection Part I: Hypochlorite production fromvery dilute chloride solutions. Journal of Applied Electrochemistry, 29, 861-868.

Dr. Barakat Mahmoud,
Assistant Researcher and Professor
Mississippi State University

Mahmoud, B. S. M., Yamazaki, K., Miyashita, K., II-Shik, S., Dong-Suk, C., & Suzuki, T. (2004). Decontamintion effect of electrolysed NaCl solutions on carp. Letters in Applied Microbiology, 39, 169-173.

Mahmoud, B. S. M., Yamazaki, K., Miyashita, K., II-Shik, S., & Suzuki, T. (2006). A new technology for fish preservation by combined treatment with electrolyzed NaCl solutions and essential oil compounds. Food Chemistry.

Mahmoud, B. S. M., Yamazaki, K., Miyashita, K., Kawai, Y., Shin, I. S., & Suzuki, T. (2006). Preservative effect of combined treatment with electrolyzed NaCl solutions and essential oil compounds on carp fillets during convectional air-drying. International Journal of Food Microbiology, 106(3), 331-337.

Mahmoud, B. S. M., Yamazaki, K., Miyashita, K., Kawai, Y., Shin, I.-S., & Suzuki, T. (2005). Preservative effect of combined treatment wit electrolyzed NaCl solutions and essential oil compounds on carp fillets during convetional air-drying. International Journal of Food  Microbiology.

Mahmoud, B. S. M., Yamazaki, K., Miyashita, K., Shin, II, & Suzuki, T. (2006). A new technology for fish preservation by combined treatment with electrolyzed NaCl solutions and essential oil compounds. Food Chemistry, 99(4), 656-662. doi: 10.1016/j.foodchem.2005.08.037

Dr. Eun-Jin Park
Washington State University

Park, E. J., Alexander, E., Taylor, G. A., Costa, R., & Kang, D. H. (2008). Effect of electrolyzed water for reduction of foodborne pathogens on lettuce and spinach. Journal of Food Science, 73(6), M268-M272.

Park, E. J., Alexander, E., Taylor, G. A., Costa, R., & Kang, D. H. (2008). Fate of foodborne pathogens on green onions and tomatoes by electrolysed water. Letters in Applied Microbiology, 46(5), 519-525.

Park, E. J., Alexander, E., Taylor, G. A., Costa, R., & Kang, D. H. (2009). The decontaminative effects of acidic electrolyzed water for Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on green onions and tomatoes with differing organic demands. Food Microbiology, 26(4), 386-390.

Dr. Yoshinobu Shimizu
Tohoku University

Shimizu, Y. Electrolytically Acidic Water's Virucidal and Bactericidal Actions and Their Significance.

Shimizu, Y. (1994). Virucidal/Bactericidal Effects of Electrolyzed Oxidizing Water in Relation to Prevention of Nosocomial (hospital) Infection.

Shimizu, Y., Hurusawa, T., Mizunuma, K., Endo, M., & Nishikata, T. (1994). Disinfectant Action of electrolyzed Oxidizing Water on Dental Instruments and Hands. Dental Journal (Japan), 40(6), 905-911.

Dr. Kiyoshi Suzuki
Food Research and Development Laboratory,
Engineering Research Center,
Higashiyamato-city, Tokyo Japan

Suzuki, K., Nakamura, T., Doi, T., Kokubo, S., & Tomita, M. (2005). The Disinfectant Effect of Slightly Acidic Electrolyzed Water Prepared with Hydrochloric Acid to Wash Vegetables. Bokin Bobai, 33(10), 509-522.

Suzuki, K., Nakamura, T., Doi, T., Kokububo, S., & Tomita, M. (2005). The Disinfectant Effect of Slightly Acidic Electrolyzed Water Prepared with Hydrochloric Acid as a Raw Material for Lettuce. Bokin Bobai, 33(11), 589-597.

Suzuki, K., Nakamura, T., Kokubo, S., & Tomita, M. (2005). The Chemical Properties of Slightly Acidic Electrolyzed Wate Prepared with Hydrochloric Acid as a Raw Material. Bokin Bobai, 33(2), 63-71.

Dr. Tetsuya Suzuki
Hokkaido University

Suzuki, T., Itakura, J., Kohda, Y., & Takama, K. Disinfection Effect of Electrolyzed Dilute NaCl Solution on food Poisoning Bacteria and Kitchen-derived Generic Food Contaminating Bacteria.

Suzuki, T., Noro, T., Kawamura, Y., Fukunaga, K., Watanabe, M., Ohta, M., . . . Hotta, K. (2002). Decontamination of Aflatoxin-Forming Fungus and Elimination of Aflatoxin Mutagenicity with Electrolyzed NaCl Anode Solution. Journal of Agricultural and Food Chemistry, 50, 633-641.

Dr. Linda Venczel, Senior Program Officer
Bill & Melinda Gates Foundation,
Impatient Optimists

Venczel, L. Evaluation and Application os a Mixed Oxidant Disinfection System for Waterborne Disease Prevention. Dissertation: University of North Carolina, 1-252.

Venczel, L. V., Arrowood, M., Hurd, M., & Sobsey, M. D. (1997). Inactivation of Cryptosporidium parvum Oocysts and Clostridium perfringens Spores by a Mixed-Oxidant Disinfectant and by Free Chlorine. Applied and Environmental Microbiology, 63(4), 1598-1601.

Venczel, L. V., Arrowood, M., Hurd, M., & Sobsey, M. D. (1997). Inactivation of Cryptosporium Parvum Oocysts and Clostridium PerfringensSpores by a Mixed-Oxidant Disinfectant and by Free Chlorine. Applied and Environmental Microbiology, 1598-1601.

 

 

Manufacturers

The following are links to companies that manufacture electrolyzed water generators.

  1. Hoshizaki America, Inc.
  2. EAU Technologies, Inc.
  3. Amano Eco Technology Corp.
  4. Miox Corp.
  5. Purester by Morinaga
  6. Radical Waters
  7. Trustwater
  8. PuriCore
  9. Global Resource Envi-tech
  10. Japan Functional Water Foundation