College-wide Navigational Links | Go to Local Content
Main Content |

EO Water Information Network

Water Electrolysis

List of Sections

Review | Efficacy | Chemistry | Fruits and Vegetables | Meat and Poultry | Seafoods | Misc. Foods | Processing Equipment | Agriculture | Health and Medical | Other

Review

Al-Haq, M. I., Sugiyama, J., & Isobe, S. (2005). Applications of electrolyzed water in agriculture & food industries. Food Science and Technology Research, 11(2), 135-150.

Bazinet, L., Lararche, F., & Ippersiel, D. (1998). Bipolar-membrane electrodialysis: Applications of electrodialysis in the food industry. Trends in food sciecne and technology, 9, 107-113.

Bolder, N. M. (1997). Decontamination of Meat and Poultry Carcasses. Trends in Food Science and Technology, 221-227.

Chen, G. H. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38(1), 11-41.

Clauwaert, P., Aelterman, P., Pham, T. H., De Schamphelaire, L., Carballa, M., Rabaey, K., & Verstraete, W. (2008). Minimizing losses in bio-electrochemical systems: the road to applications. Applied Microbiology and Biotechnology, 79(6), 901-913.

de Levie, R. (1999). The Electrolysis of Water. Journal of Electroanalytical Chemistry, 92-93.

Folkes, L. K., Candeias, L. P., & Wardman, P. (1995). Kinetics and Mechanics of Hypochlorous Acid Reactions. Archives of Biochemistry and Biophysics, 323(1), 120-126.

Gabrielli, C., Huet, F., M., K., & Sahar, A. (1989). Investigation of water electrolysis by special analysis.  I.  Influence of the current density. Journal of Applied Electrochemistry, 19, 683-696.

Gómez-López VM, D. F., Ragaert P, Chen L, Ryckeboer J and Debevere J. (2008). Decontamination methods to prolong the shelf-life of minimally processed vegetables, state-of-the-art. Critical Reviews in Food Science and Nutrition, 48(6), 487-495.

Grossi, J. (2007). What is Electrodeionization? Bioscience Technology(11), 24.

Huang, D. J., Ou, B. X., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856.

Koseki, S., & Itoh, K. Fundamental Properties of Electrolyzed Water. Nippon Shokuhin Kagaku Kogaku Kaishi, 47, 390-393.

Kraft, A., Blaschke, M., Kreysig, D., Sandt, B., Schroder, F., & Rennau, J. (1999). Electrochemical water disinfection. Part II: Hypochlorite production from potable water, chlorine consumption and the problem of calcareous deposits. Journal of Applied Electrochemistry, 29, 895-902.

Kraft, A., Stadelmann, M., Blaschke, M., Kreysig, D., Sandt, B., & Schroder, F. (1999). Electrochemical water disinfection Part I: Hypochlorite production from very dilute chlorine solutions. Journal of Applied Electrochemistry, 29, 861-868.

Krstajic, N., Nakic, V., & Spasojevic, M. (1991). Hypochlorite production II. Direct electrolysis in a cell divided by an anionic membrane. Journal of Applied Electrochemistry, 21, 637-641.

Neagu, C., Jansen, H., Gardeniers, H., & Elwenspoek, M. The Electrolysis of Water: An Actuation Principle for MEMS with a Big Opportunity. Mechatronics, 571-581.

Rutala, W. A., & Weber, D. J. (2001). New Disinfection and Sterilization Methods. CDC, 7(2).

Trasatti, S. (1999). Water electrolysis: who first? Journal of Electroanalytical Chemistry, 90-91.

Treffeisen, F. J., & Sardaro, R. (1996). Chlorination. February, 12-17.

Walsh, F. C. (2001). Electrochemical technology for environmental treatment and clean energy conversion. Pure Appl. Chem., 73(12), 1819-1837.

(top)

Efficacy

Bonde, M. R., & Nester, S. E. (1999). Comparison of Effects of Acidic Electrolyzed Water and NaOCl on Tilletia Indica Teliospore Germination. 627-632.

Cloete, T. E., Thantsha, M. S., Maluleke, M. R., & Kirkpatrick, R. (2009). The antimicrobial mechanism of electrochemically activated water against Pseudomonas aeruginosa and Escherichia coli as determined by SDS-PAGE analysis. Journal of Applied Microbiology, 107(2), 379-384.

Gómez-López, V. M., Gil, M. I., Pupunat, L., & Allende, A. (2015). Cross-contamination of Escherichia coli O157:H7 is inhibited by electrolyzed water combined with salt under dynamic conditions of increasing organic matter. Food Microbiology, 46(0), 471-478.

Hanaoka, K. (2001). Antioxidant effects of reduced water produced by electrolysis of sodium chloride solutions. Journal of Applied Electrochemistry, 31, 1307-1313.

Hsu, S. Y. (2003). Effects of water flow rate, salt concentration and water temperature on efficiency of an electrolyzed oxidizing water generator. Journal of Food Engineering, 60, 469-473.

Kiura, H., Sano, K., Morimatsu, S., Nakano, T., Morita, C., Yamaguchi, M., . . . Katsuoka, Y. (2002). Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration. Journal of Microbiological Methods, 49, 285-293.

Koseki, M., Fujiki, S., Tanaka, Y., Noguchi, H., & Nishikawa, T. (2005). Effect of water hardness on the taste of alkaline electrolyzed water. Journal of Food Science, 70(4), S249-S253.

Koseki, M., Nakagawa, A., Tanaka, Y., Noguchi, H., & Omochi, T. (2003). Sensory evaluation of taste of alkali-ion water and bottled mineral waters. Journal of Food Science, 68(1), 354-358.

Koseki, M., Tanaka, Y., Noguchi, H., & Nishikawa, T. (2007). Effect of pH on the taste of alkaline electrolyzed water. Journal of Food Science, 72(5), S298-S302.

Lee, S. Y., Kim, E. O., Seo, H. J., Kim, M. Y., & Kim, J. D. (2004). Development of new method for antioxidant capacity with ORP-pH system. Biotechnology and Bioprocess Engineering, 9(6), 514-518.

Ma, L., Yang, Z., Li, Y., & Griffis, C. (2000). Microbial, Chemical, and Physical Changes in Chill Water Treated with Electrochemical Method. Journal of Food Process Engineering.

Miyashita, K., Yasuda, M., Ota, T., & Suzuki, T. (1999). Antioxidative activity of a cathodic solution produced by the electrolysis of a dilute NaCl solution. Bioscience Biotechnology and Biochemistry, 63(2), 421-423.

Morita, C., Sano, K., Morimatsu, S., Kiura, H., Goto, T., Kohno, T., Katsuoka, Y. (1999). Disinfection potential of electrolyzed solutions containing sodium chloride at low concentrations. Journal of Virological Methods, 163-174.

Nakagawara, S., Goto, T., Nara, M., Ozawa, Y., Hotta, K., & Arata, Y. (1998). Spectroscopic Characterization and the pH Dependence of Bactericidal Activity of the Aqueous Chlorine solution. Analytical Sciences, 691-698.

Ogata, Y., Uchiyama, S., Hayashi, M., Yasuda, M., & Hine, F. (1990). Studies of the pH of the membrane surface in a laboratory chlor-alkali cell. Journal of Applied Electrochemistry, 20, 555-558.

Oomori, T., Oka, T., & Arata, Y. The Efficiency of Disinfection of Acidic Electrolyzed Water in the Presence of Organic Materials. Analytical Sciences.

Rogers, J. V., Ducatte, G. R., Choi, Y. W., & Early, P. C. (2006). A preliminary assessment of Bacillus anthracis spore inactivation using an electrochemically activated solution (ECASOL (TM)). Letters in Applied Microbiology, 43(5), 482-488.

Selkon, J. B., Babb, J. R., & Morris, R. (1999). Evaluation of the antimicrobial activity of a new super-oxidized water, Sterilox (R), for the disinfection of endoscopes. Journal of Hospital Infection, 41(1), 59-70.

Shetty, N., Srinivasan, S., Holton, J., & Ridgway, G. L. (1999). Evaluation of microbicidal activity of a new disinfectant: Sterilox (R) 2500 against Clostridium difficile spores, Helicobacter pylori, vancomycin resistant Enterococcus species, Candida albicans and several Mycobacterium species. Journal of Hospital Infection, 41(2), 101-105.

Shimada, K., Ito, K., & Murai, S. (2000). A comparison of the bactericidal effects and cytotoxic activity of three types of oxidizing water, prepared by electrolysis, as chemical dental plaque control agents. International Journal of Antimicrobial Agents, 15, 49-53.

Slavik, M. F., Kim, J.-W., Li, Y., Walker, J. T., & Wang, H. (1995). Morphological changes of Salmonella typhimurium caused by electrical stimulation in various salt solutions. Journal of Food Protection, 58(4), 375-380.

Smigic, N., Rajkovic, A., Antal, E., Medic, H., Lipnicka, B., Uyttendaele, M., & Devlieghere, F. (2009). Treatment of Escherichia coli O157:H7 with lactic acid, neutralized electrolyzed oxidizing water and chlorine dioxide followed by growth under sub-optimal conditions of temperature, pH and modified atmosphere. Food Microbiology, 26(6), 629-637.

Stevenson, S. M. L., Cook, S. R., Bach, S. J., & McAllister, T. A. (2004). Effects of Water Source, Dilution, Storage, and Bacterial and Fecal Loads on the Efficacy of Electrolyzed Oxidizing Water for the Control of Escherichia coli O157:H7. Journal of Food Protection, 67(7), 1377-1383.

Suzuki, T., Noro, T., Kawamura, Y., Fukunaga, K., Watanabe, M., Ohta, M., . . . Hotta, K. (2002). Decontamination of Aflatoxin-Forming Fungus and Elimination of Aflatoxin Mutagenicity with Electrolyzed NaCl Anode Solution. Journal of Agricultural and Food Chemistry, 50, 633-641.

Tosa, N., & Yamasaki, Y. (1999). Effect of Organic Substances on the Residual Chlorine Contained in the Strong Acidic Electrolyzed Water. Nippon Shokuhin Kagaku Kogaku Kaishi, 286-295.

Venczel, L. V., Arrowood, M., Hurd, M., & Sobsey, M. D. (1997). Inactivation of Cryptosporidium parvum Oocysts and Clostridium perfringens Spores by a Mixed-Oxidant Disinfectant and by Free Chlorine. Applied and Environmental Microbiology, 63(4), 1598-1601.

Vijayaraghavan, K., Ramanujam, T. K., & Balasubramanian, N. (1999). In situ hypochlorous acid generation for the treatment of syntan wastewater. Waste Management, 19, 319-323.

(top)

Chemistry

Abia, L., Armesto, X. L., Canie L., M., Garcia, M. V., & Santaballa, J. A. (1998). Oxidation of Aliphatic Amines by Aqueous Chlorine. Tetrahedron, 54, 521-530.

Bashtan, S. Y., Goncharuk, V. V., Chebotareva, R. D., Belyakov, V. N., & Linkov, V. M. (1999). Production of Sodium Hypochlorite in an Electrolyser Equipped with a Ceramic Membrane. Desalination, 77-82.

Divisek, J., Steffen, B., & Scmitz, H. (1994). Theoretical Analysis and Evaluation of the Operating Data of a Bipolar Water Electrolyser. Int. J. Hydrogen Energy, 19(7), 570-586.

Gordon, G., Emmert, G., Gauw, R., & Bubnis, B. (1998). Can Ozone and Ozone By-Products Be Formed During the Electrolysis of Salt Brine? Ozone Science & Engineering, 20, 239-249.

Gordon, G., Gauw, R., Emmert, G., & Bubnis, B. (1998). The kinetics and mechanism of ClO3-formation following the electrolysis of salt brine; What role do ClO2 and/or O3 play? Models in Chemistry, 135(5), 799-809.

Hanaoka, K., Sun, D. X., Lawrence, R., Kamitani, Y., & Fernandes, G. (2004). The mechanism of the enhanced antioxidant effects against superoxide anion radicals of reduced water produced by electrolysis. Biophysical Chemistry, 107(1), 71-82.

Kikuchi, K., Takeda, H., Rabolt, B., Okaya, T., Ogumi, Z., Saihara, Y., & Noguchi, H. (2001). Hydrogen concentration in water from an Alkali-Ion-Water electrolyzer having a platinum-electroplated titanium electrode. Journal of Applied Electrochemistry, 31(12), 1301-1306.

Lee, A. Y., Kim, Y. K., Ryoo, K. K., Lee, Y. B., & Park, E. J. (2006). Electrolyzed-reduced water protects against oxidative damage to DNA, RNA, and protein. Applied Biochemistry and Biotechnology, 135(2), 133-144.

Liao, L. B., Chen, W. M., & Xiao, X. M. (2007). The generation and inactivation mechanism of oxidation-reduction potential of electrolyzed oxidizing water. Journal of Food Engineering, 78, 1326-1332.

Patnaik, P., & Khoury, J. (2003). Pathways of phenol-chlorine reactions in iodide waters: Diversion from chlorosubstitution to idosubstitution. Application Note, March, 22-24.

Roue, L., Bonneau, M.-E., Guay, D., Blouin, M., & Schulz, R. (2000). Effect of oxygen and titanium contents on the stability of nanocrystalline Ti-Ru-Fe-O cathode materials for chlorate electrolysis. Journal of Applied Electrochemistry, 30, 491-498.

Suzuki, K., Nakamura, T., Kokubo, S., & Tomita, M. (2005). The Chemical Properties of Slightly Acidic Electrolyzed Wate Prepared with Hydrochloric Acid as a Raw Material. Bokin Bobai, 33(2), 63-71.

Watanabe, T., Idehara, T., Yoshimura, Y., & Nakazawa, H. (1998). Simultaneous Determination of Chlorine Dioxide and Hypochlorite in Water by High-Performance Liquid Chromatography. Journal of Chromatography A, 796, 397-400.

(top)

Fruits and Vegetables

Al-Haq, M. I., Seo, Y., Oshita, S., & Kawagoe, Y. (2001). Fungicidal Effectiveness of Electrolyzed Oxidizing Water on Postharvest Brown Rot of Peach. HortScience, 36(7), 1310-1314.

Al-Haq, M. I., Seo, Y., Oshita, S., & Kawagoe, Y. (2002). Disinfection effects of electroyzed oxidizing water on suppressing fruit rot on pear caused by Botryosphaeria berengeriana. Food Research International, 35, 657-664.

Bari, M. L., Nazuka, E., Sabina, Y., Todoriki, S., & Isshiki, K. (2003). Chemical and Irradiation Treatments for Killing Escherichia coli O157:H7 on Alfalfa, Radish, and Mung Bean Seeds. Journal of Food Protection, 66(5), 767-774.

Bari, M. L., Nei, D., Enomoto, K., Todoriki, S., & Kawamoto, S. (2009). Combination Treatments for Killing Escherichia coli O157:H7 on Alfalfa, Radish, Broccoli, and Mung Bean Seeds. Journal of Food Protection, 72(3), 631-636.

Bari, M. L., Sabina, Y., Isobe, S., Uemura, T., & Isshiki, K. (2003). Effectiveness of Electrolyzed Acidic Water in Killing Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monogytogenes on the Surfaces of Tomatoes. Journal of Food Protection, 66(4), 542-548.

Deza, M. A., Araujo, M., & Garrido, M. J. (2003). Inactivation of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes on the surface of tomatoes by neutral electrolyzed water. Letters in Applied Microbiology, 37, 482-487.

Gómez-López, V. M., Devlieghere, F., Ragaert, P., Chen, L., Ryckeboer, J., & Debevere, J. (2008). REDUCTION OF MICROBIAL LOAD AND SENSORY EVALUATION OF MINIMALLY PROCESSED VEGETABLES TREATED WITH CHLORINE DIOXIDE AND ELECTROLYSED WATER. Italian Journal of Food Science, 20(3), 321-331.

Gómez-López, V. M., Gobet, J., Selma, M. V., Gil, M. I., & Allende, A. (2013). Operating conditions for the electrolytic disinfection of process wash water from the fresh-cut industry contaminated with E. coli o157:H7. Food Control, 29(1), 42-48.

Gómez-López, V. M., Lannoo, A.-S., Gil, M. I., & Allende, A. (2014). Minimum free chlorine residual level required for the inactivation of Escherichia coli O157:H7 and trihalomethane generation during dynamic washing of fresh-cut spinach. Food Control, 42(0), 132-138.

Gómez-López, V. M., Marín, A., Medina-Martínez, M. S., Gil, M. I., & Allende, A. (2013). Generation of trihalomethanes with chlorine-based sanitizers and impact on microbial, nutritional and sensory quality of baby spinach. Postharvest Biology and Technology, 85(0), 210-217.

Guentzel, J. L., Lam, K. L., Callan, M. A., Emmons, S. A., & Dunham, V. L. (2008). Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water. Food Microbiology, 25(1), 36-41.

Izmui, H., Kiba, T., & Hashimoto, S. (2000). Efficacy of Electroysed Water as a Disinfectant for Fresh-Spinach. ACIAR Proceedings 100, 216-221.

Keskinen, L. A., Burke, A., & Annous, B. A. (2009). Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves. International Journal of Food Microbiology, 132(2-3), 134-140.

Koseki, S., Fujiwara, K., & Itoh, K. (2002). Decontamination effect of frozen acidic electrolyzed water on lettuce. Journal of Food Protection, 65(2), 411-414.

Koseki, S., & Itoh, K. (2001). Prediction of microbial growth in fresh-cut vegetables treated with acidic electrolyzed water during storage under various temperature conditions. Journal of Food Protection, 64(12), 1935-1942.

Koseki, S., Yoshida, K., Isobe, S., & Itoh, K. (2004). Efficacy of Acidic Electrolyzed Water for Microbial Decontamination of Cucumbers and Strawberries. Journal of Food Protection, 67(6), 1247-1251.

Koseki, S., Yoshida, K., Kamitani, Y., & Itoh, K. (2003). Influence of Inoculation Method, Spot Inoculation Site, and Inoculation Size on the Efficacy of Acidic Electrolyzed Water against Pathogens on Lettuce. Journal of Food Protection, 66(11), 2010-2016.

Lee, H.-J., Park, H.-J., Jeong, J.-W., Kim, D., & Chinnan, M. S. (2007). Effect of electrolyzed water treatments on the quality of hand- and machine-peeled yams (Dioscorea spp.) during cold storage. LWT, 40, 646-654.

Lin, C. S., Wu, C., Yeh, J. Y., & Saalia, F. K. (2005). The evaluation of electrolysed water as an agent for reducing micro-organisms on vegetables. International Journal of Food Science and Technology, 40(5), 495-500.

Nicholl, P., & Prendergast, M. (1998). Disinfection of Shredded Salad Ingredients with Sodium Dichloroisocyanurate. Journal of Food Processing and Preservation, 22, 67-79.

Okull, D. L., & LaBorde, L. E. (2004). Activity of Electrolyzed Oxidizing Water Against Penicilium expansum in Suspension and on Wounded Apples. Journal of Food Science, 69(1), 23-27.

Ongeng, D., Devllieghere, F., Debevere, J., Coosemans, J., & Ryckeboer, J. (2006). The efficacy of electrolysed oxidising water for inactivating spoilage microorganisms in process water and on minimally processed vegetables. International Journal of Food  Microbiology, 109, 187-197.

Park, E. J., Alexander, E., Taylor, G. A., Costa, R., & Kang, D. H. (2008). Effect of electrolyzed water for reduction of foodborne pathogens on lettuce and spinach. Journal of Food Science, 73(6), M268-M272.

Park, E. J., Alexander, E., Taylor, G. A., Costa, R., & Kang, D. H. (2008). Fate of foodborne pathogens on green onions and tomatoes by electrolysed water. Letters in Applied Microbiology, 46(5), 519-525.

Park, E. J., Alexander, E., Taylor, G. A., Costa, R., & Kang, D. H. (2009). The decontaminative effects of acidic electrolyzed water for Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on green onions and tomatoes with differing organic demands. Food Microbiology, 26(4), 386-390.

Pernezny, K., Raid, R. N., Havranek, N., & Sanchez, J. (2005). Toxicity of mixed-oxidant electrolyzed oxidizing water to in vitro and leaf surface populations of vegetable bacterial pathogens and control of bacterial diseases in the greenhouse. Crop Protection, 24(8), 748-755.

Rico, D., Martin-Diana, A. B., Barry-Ryan, C., Frias, J. M., Henehan, G. T. M., & Barat, J. M. (2008). Use of neutral electrolysed water (EW) for quality maintenance and shelf-life extension of minimally processed lettuce. Innovative Food Science & Emerging Technologies, 9(1), 37-48.

Sharma, R. R., Demirci, A., Puri, V. M., Beuchat, L. R., & Fett, W. F. (2004). Modeling the inactivation of Escherichia coli O157 : H7 on inoculated alfalfa seeds during exposure to ozonated or electrolyzed oxidizing water. Transactions of the ASAE, 47(1), 173-181.

Stan, S. D., & Daeschel, M. A. (2003). Reduction of Salmonella enterica on Alfalfa Seeds with Acidic Electrolyzed Oxidizing Water and Enhanced Uptake of Acidic Electrolyzed Oxidizing Water into Seeds by Gas Exchange. Journal of Food Protection, 66(11), 2017-2022.

Stopforth, J. D., Mai, T., Kottapalli, B., & Samadpour, M. (2008). Effect of acidified sodium chlorite, chlorine, and acidic electrolyzed water on Escherichia coli O157 : H7, Salmonella, and Listeria monocytogenes inoculated onto leafy greens. Journal of Food Protection, 71(3), 625-628.

Suffredini, H. B., Cerne, J. L., Crnkovic, F. C., Machado, S. A. S., & Avaca, L. A. Recent Developments in Electrode Materials for Water Electrolysis. International Journal of Hydrogen Energy, 415-423.

Suzuki, K., Nakamura, T., Doi, T., Kokubo, S., & Tomita, M. (2005). The Disinfectant Effect of Slightly Acidic Electrolyzed Water Prepared with Hydrochloric Acid to Wash Vegetables. Bokin Bobai, 33(10), 509-522.

Suzuki, K., Nakamura, T., Doi, T., Kokububo, S., & Tomita, M. (2005). The Disinfectant Effect of Slightly Acidic Electrolyzed Water Prepared with Hydrochloric Acid as a Raw Material for Lettuce. Bokin Bobai, 33(11), 589-597.

Udompijitkul, P., Daeschel, M. A., & Zhao, Y. (2007). Antimicrobial effect of electrolyzed oxidizing water against Escherichia coli O157 : H7 and Listeria monocytogenes on fresh strawberries (Fragaria x ananassa). Journal of Food Science, 72(9), M397-M406.

Workneh, T. S., Osthoff, G., Pretorius, J. C., & Hugo, C. J. (2003). Comparison of Anolyte and Chlorinated Water as a Disinfecting Dipping Treatment for Stored Carrots. Journal of Food Quality, 26, 463-474.

Wu, L., Hao, J., & Li, L. (2006). The Research of Electrolyzed Functional Water on Maintaining the Quality of Fresh-Cut Potato.

Yang, H., Swem, B. L., & Li, Y. (2003). The effect of pH on inactivation of pathogenic bacteria on fresh-cut lettuce by dipping treatment with electrolyzed water. Journal of Food Science, 68(3), 1013-1017.

(top)

Meat and Poultry

Achiwa, N., & Nishio, T. (2003). The Use of Electrolyzed Water for Sanitation Control of Eggshells and GP Center. Food Sci. Technol. Res., 9(1), 100-103.

Bialka, K. L., Demirci, A., Knabel, S. J., Patterson, P. H., & Puri, V. M. (2004). Efficacy of Electrolyzed Oxidizing Water for the Microbial Safety and Quality of Eggs. Poultry Science, 83, 2071-2078.

Bosilevac, J. M. S., S.D. Brichta,D.M.Koohmaraie,M. (2005). Efficacy of Ozonated and Electrolyzed Oxidative Waters To Decontaminate Hides of Cattle before Slaughter. Journal of Food Protection, 68(7), 1393-1398.

Dorsa, W. J., Cutter, Catherine., Siragusa, Gregory R. Long-Term Bacterial Profile of Refigerated Ground Beef made from Carcass Tissue, Experimentally Contaminated with Pathogens and Spoilage Bacteria after Hot Water, Alkaline, or Organic Acid Washes. Journal of Food Protection, 1615-1622.

Fabrizio, K. A., & Cutter, C. N. (2004). Comparison of electrolyzed oxidizing wate with other antimicrobial interventions to reduce pathogens on fresh pork. Meat Science, 68, 463-468.

Fabrizio, K. A., & Cutter, C. N. (2005). Application of electrolyzed oxidizing water to reduce Listeria monocytogenes on ready-to-eat meats. Meat Science, 71(2), 327-333.

Fabrizio, K. A., Sharma, R. R., Demirci, A., & Cutter, C. N. (2002). Comparison of Electrolyzed Oxidizing Water with Various Antimicrobial Interventions to Reduce Salmonella Species on Poultry. Poultry Science, 81, 1598-1605.

Russell, S. M. (2003). The Effect of Electrolyzed Oxidative Water Applied Using Electrostatic Spraying on Pathogenic and Indicator Bacteria on the Surface of Eggs. Poultry Science, 82, 158-162.

Tsai, L. S., Hernlem, B., & Huxsoll, C. C. (2002). Disinfection and solids removal of poultry chiller water by electroflotation. Journal of Food Science, 67(6), 2160-2164.

Vareltzis, K., Soultos, N., Koidis, P., Ambrosiadis, J., & Genigeorgis, C. (1996). Antimicrobial Effects of Sodium Tripolyphosphate Against Bacteria attached to the surface of Chicken Carcasses. 665-669.

Ye, J., Yang, H., Kim, H.-K., & Li, Y. (2001). Inactivation of listeria monocytogenes in recirculated brine for chilling thermally processed bacon using an electrochemical treatment system. Journal of Food Science, 66(5), 729-733.

(top)

Seafoods

Kim, J. M., Huang, T.-S., Marshall, M. R., & Wei, C.-I. (1999). Chloride Dioxide Treatment of Seafoods to Reduce Bacterial Loads. Journal of Food Science, 64, 1089-1093.

Kim, W. T., Lim, Y. S., Shin, I. S., Park, H., Chung, D., & Suzuki, T. (2006). Use of electrolyzed water ice for preserving freshness of Pacific saury (Cololabis saira). Journal of Food Protection, 69(9), 2199-2204.

Liu, C. C., Duan, J. Y., & Su, Y. C. (2006). Effects of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing surfaces. International Journal of Food Microbiology, 106(3), 248-253.

Mahmoud, B. S. M., Yamazaki, K., Miyashita, K., II-Shik, S., Dong-Suk, C., & Suzuki, T. (2004). Decontamintion effect of electrolysed NaCl solutions on carp. Letters in Applied Microbiology, 39, 169-173.

Mahmoud, B. S. M., Yamazaki, K., Miyashita, K., II-Shik, S., & Suzuki, T. (2006). A new technology for fish preservation by combined treatment with electrolyzed NaCl solutions and essential oil compounds. Food Chemistry.

Mahmoud, B. S. M., Yamazaki, K., Miyashita, K., Kawai, Y., Shin, I. S., & Suzuki, T. (2006). Preservative effect of combined treatment with electrolyzed NaCl solutions and essential oil compounds on carp fillets during convectional air-drying. International Journal of Food Microbiology, 106(3), 331-337.

Mahmoud, B. S. M., Yamazaki, K., Miyashita, K., Kawai, Y., Shin, I.-S., & Suzuki, T. (2005). Preservative effect of combined treatment wit electrolyzed NaCl solutions and essential oil compounds on carp fillets during convetional air-drying. International Journal of Food  Microbiology.

Mahmoud, B. S. M., Yamazaki, K., Miyashita, K., Shin, II, & Suzuki, T. (2006). A new technology for fish preservation by combined treatment with electrolyzed NaCl solutions and essential oil compounds. Food Chemistry, 99(4), 656-662.

(top)

Misc. Foods

Hara, Y., Matsuda, H., & Arai, E. (2003). Effects of weakly electrolyzed water on properties of tofu (soybean curd). Food Science and Technology Research, 9(4), 332-337.

Hara, Y., Watanuki, A., & Asai, E. (2003). Effects of Weakly Electrolyzed Water on Properties of Japanese Wheat Noodles (Udon). Food Sci. Technol. Res., 9(4), 320-326.

Kobayashi, K., Tosa, N., & Hara, Y. (1996). An examination of cooked rice with electrolyzed water. Nippon Shokuhin Kagaku Kogaku Kaishi, 43(8), 930-938.

Onishi, R. H., Y.//Arai,E. (1999). Effect of Weak Electrolyzed Water on the Properties of Bread. Food Sci Tech Res., 5(4), 388-392.

Schreyer, A., Britten, M., Chapuzet, J. M., Lessard, J., & Bazinet, L. (2008). Electrochemical modification of the redox potential of different milk products and its evolution during storage. Innovative Food Science & Emerging Technologies, 9(3), 255-264.

Yoshida, K., Lim, K.-i., Chung, H.-c., Uemura, K., Isobe, S., & Suzuki, T. (2001). Sterilization Effect and Influence on Food Surface by Acetic Electrolyzed Water Treatment. Nippon Shokuhin Kagaku Kogaku Kaishi, 48(11), 827-834.

Zhao, Z., Saito, M., Yoshihashi, T., Nakahara, K., & Tatsumi, E. (2002). Microorganism control in Packed Tofu manufacture with Electrolyzed Water. JIRCAS Journal(10), 13-20.

(top)

Processing Equipment

Deza, M. A., Araujo, M., & Garrido, M. J. (2005). Inactivation of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus on stainless steel and glass surfaces by neutral electrolysed water. Letters in Applied Microbiology, 40(5), 341-346.

Deza, M. A., Araujo, M., & Garrido, M. J. (2007). Efficacy of Neutral Electrolyzed Water To Inactivate Escherichia coli, Listeria monogytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus on Plastic and Wooden Kitchen Cutting Boards. Journal of Food Protection, 70(1), 102-108.

Greene, A. K., Few, B. K., & Serafini, J. C. (1993). A comparison of ozonation and chlorination for the disinfection of stainless steel surfaces. Journal of Dairy Science, 76, 3617-3620.

Greene, A. K., Vergano, P. J., Few, B. K., & Serafini, J. C. (1994). Effect of ozonated water sanitization on gasket materials used in fluid food processing. Journal of Food Engineering, 21, 439-446.

Handojo, A., Lee, J., Hipp, J., & Pascall, M. A. (2009). Efficacy of Electrolyzed Water and an Acidic Formulation Compared with Regularly Used Chemical Sanitizers for Tableware Sanitization during Mechanical and Manual Ware-Washing Protocols. Journal of Food Protection, 72(6), 1315-1320.

Knape, K. D., Carey, J. B., Burgess, R. P., Kwon, Y. M., & Ricke, S. C. (1999). Comparison of chlorine with an iodine-based compound on eggshell surface microbial populations in a commercial egg washer. Journal of Food Safety, 19, 185-194.

Krysinski, E. P., Brown, L. J., & Marchisello, T. J. (1992). Effect of cleaners and sanitizers on Listeria monocytogenes attached to product contact surfaces. Journal of Food Protection, 55.

Walker, S. P., Demirci, A., Graves, R. E., Spencer, S. B., & Roberts, R. F. (2005). Cleaning milking systems using electrolyzed oxidizing water. Transactions of the ASAE, 48(5), 1827-1833.

(top)

Agriculture

Hata, G., Hayami, S., Weine, F. S., & Toda, T. (2001). Effectiveness of oxidative potential water as a root canal irrigant. International Endodontic Journal, 34(4), 308-317.

Miyamoto, M., Inoue, K., Hoki, M., Gu, Y. J., Cui, W. X., & Ohyanagi, H. (1998). Effect of "acidic oxidative potential water" on microbial contamination harvesting porcine pancreas for islet xenotransplantation. Transplantation Proceedings, 30(7), 3431-3432.

Solovyeva, A. M., & Dummer, P. M. H. (2000). Cleaning effectiveness of root canal irrigation with electrochemically activated anolyte and catholyte solutions: a pilot study. International Endodontic Journal, 33(6), 494-504.

(top)

Health and Medical

Daimon, T., Fujiwara, K., Tanaka, N., Saio, H., & Abe, T. (1997). The Cleaning and Disinfection of the Hemodialysis Equipment Using Electrolyzed Hyperacidity Water. Jpn J Artif Organs, 26(1), 130-134.

Hayashi, H., Kumon, K., Yahagi, N., Haruna, M., Watanabe, Y., Matsui, J., & Hattori, R. (1997). Successful Treatment of Mediastinitis after Cardiovascular Surgery Using Electrolyzed Strong Acid Aqueou Solution. Artificial Organs, 21(1), 39-42.

Hayashibara, T., Kadowaki, A., Yuda, N., Yamanaka, M., Akagawa, K., Tagusa, K., & Matsui, K. (1984). A Study on the Disinfection/Microbicidal Effects of Electrolyzed Oxidizing Water. Japanese Journal of Medical Technology, 43(3), 555-561.

Horiba, N., Hiratsuka, K., Onoe, T., Yoshida, T., Suzuki, K., Matsumoto, T., & Nakamura, H. (1999). Bactericidal effect of electrolyzed neutral water on bacteria isolated from infected root canals. Oral Surgery Oral Medicine Oral Pathology Oral Radiol Endod, 87(1), 83-87.

Khan, A. U., & Kasha, M. Singlet molecular oxygen evolution upon simple acidification of aqueous hypochlorite: Application to studies on the deleterious health effects of chlorinated drinking water. Proc. Natl. Acad. Sci., 91, 12362-12364.

Landa-Solis, C., Gonzalez-Espinosa, D., Guzman-Soriano, B., Snyder, M., Reyes-Teran, G., Torres, K., & Gutierrez, A. A. (2005). Microcyn (TM): a novel super-oxidized water with neutral pH and disinfectant activity. Journal of Hospital Infection, 61(4), 291-299.

Lee, K. J., Jin, D., Chang, B. S., Teng, Y. C., & Kim, D. H. (2009). The Immunological Effects of Electrolyzed Reduced Water on the Echinostoma hortense Infection in C57BL/6 Mice. Biological & Pharmaceutical Bulletin, 32(3), 456-462.

Marais, J. T., & Brozel, V. S. (1999). Electro-chemically activated water in dental unit water lines. British Dental Journal, 187(3), 156-158.

Marais, J. T., & Williams, W. P. (2001). Antimicrobial effectiveness of electro-chemically activated water as an endodontic irrigation solution. International Endodontic Journal, 34(3), 237-243.

Nakae, H., & Inaba, H. Effectiveness of Electrolyzed Oxidized Water Irrigation in a Burn-Wound Infection Model. The Journal of Trauma Injury, Infection, and Critical Care, 49(3), 511-514.

Shimizu, Y., Hurusawa, T., Mizunuma, K., Endo, M., & Nishikata, T. (1994). Disinfectant Action of electrolyzed Oxidizing Water on Dental Instruments and Hands. Dental Journal (Japan), 40(6), 905-911.

Shirahata, S., Kabayama, S., Nakano, M., Miura, T., Kusumoto, N., Gotoh, M., . . . Katakura, Y. (1997). Electrolyzed-Reduced Water Scavenges Active Oxygen Species and Protects DNA from Oxidative Damage. Biochemical and Biophysical Research Communications, 234, 269-274.

Yanagihara, T., Arai, K., Miyamae, K., Sato, B., Shudo, T., Yamada, M., & Aoyama, M. (2005). Electrolyzed hydrogen-saturated water for drinking use elicits an antioxidative effect: A feeding test with rats. Bioscience Biotechnology and Biochemistry, 69(10), 1985-1987.

(top)

Other

Kobayashi, K., Yamasaki, Y., Tosa, N., Hara, Y., & Horie, S. (1997). The Extraction of Katsuobushi by Electrolyzed Water. Nippon Stokuhin Kagaku Kogaku Kaishi, 44(7), 508-511.

Yamanaka, K., Imaoka, T., Futatsuki, T., Yamashita, Y., Mitsumori, K.-i., Kasama, Y.,  Aoto, N. (1999). Electrolyzed Water as the Novel Cleaning Media in Ultra-Large-Scale Integration and Liquid-Crystal Display Manufacturing. Langmuir, 15, 4165-4170.

(top)